379 research outputs found

    From spinons to magnons in explicit and spontaneously dimerized antiferromagnetic chains

    Full text link
    We reconsider the excitation spectra of a dimerized and frustrated antiferromagnetic Heisenberg chain. This model is taken as the simpler example of compiting spontaneous and explicit dimerization relevant for Spin-Peierls compounds. The bosonized theory is a two frequency Sine-Gordon field theory. We analize the excitation spectrum by semiclassical methods. The elementary triplet excitation corresponds to an extended magnon whose radius diverge for vanishing dimerization. The internal oscilations of the magnon give rise to a series of excited state until another magnon is emited and a two magnon continuum is reached. We discuss, for weak dimerization, in which way the magnon forms as a result of a spinon-spinon interaction potential.Comment: 5 pages, latex, 3 figures embedded in the tex

    Failure of Tapo Canyon Tailings Dam

    Full text link

    Excitations with fractional spin less than 1/2 in frustrated magnetoelastic chains

    Full text link
    We study the magnetic excitations on top of the plateaux states recently discovered in spin-Peierls systems in a magnetic field. We show by means of extensive density matrix renormalization group (DMRG) computations and an analytic approach that one single spin-flip on top of M=1−2NM=1-\frac2N (N=3,4,...N=3,4,...) plateau decays into NN elementary excitations each carrying a fraction 1N\frac1N of the spin. This fractionalization goes beyond the well-known decay of one magnon into two spinons taking place on top of the M=0 plateau. Concentrating on the 13\frac13 plateau (N=3) we unravel the microscopic structure of the domain walls which carry fractional spin-13\frac13, both from theory and numerics. These excitations are shown to be noninteracting and should be observable in x-ray and nuclear magnetic resonance experiments.Comment: 6 pages, 5 figures. Accepted to be published in Phys. Rev.

    Pressure dependence of the melting mechanism at the limit of overheating in Lennard-Jones crystals

    Full text link
    We study the pressure dependence of the melting mechanism of a surface free Lennard-Jones crystal by constant pressure Monte Carlo simulation. The difference between the overheating temperature(TOHT_{OH}) and the thermodynamical melting point(TMT_M) increase for increasing pressure. When particles move into the repulsive part of the potential the properties at TOHT_{OH} change. There is a crossover pressure where the volume jump becomes pressure-independent. The overheating limit is pre-announced by thermal excitation of big clusters of defects. The temperature zone where the system is dominated by these big clusters of defects increases with increasing pressure. Beyond the crossover pressure we find that excitation of defects and clusters of them start at the same temperature scale related with TOHT_{OH}.Comment: 6 pages, 5 figures. Accepted for publication in Physical Review

    Mixing of magnetic and phononic excitations in incommensurate Spin-Peierls systems

    Full text link
    We analyze the excitation spectra of a spin-phonon coupled chain in the presence of a soliton. This is taken as a microscopic model of a Spin-Peierls material placed in a high magnetic field. We show, by using a semiclassical approximation in the bosonized representation of the spins that a trapped magnetic state obtained in the adiabatic approximation is destroyed by dynamical phonons. Low energy states are phonons trapped by the soliton. When the magnetic gap is smaller than the phonon frequencies the only low energy state is a mixed magneto-phonon state with the energy of the gap. We emphasize that our results are relevant for the Raman spectra of the inorganic Spin-Peierls material CuGeO3_3.Comment: 5 pages, latex, 2 figures embedded in the tex

    Domain excitations in spin-Peierls systems

    Full text link
    We study a model of a Spin-Peierls material consisting of a set of antiferromagnetic Heisenberg chains coupled with phonons and interacting among them via an inter-chain elastic coupling. The excitation spectrum is analyzed by bosonization techniques and the self-harmonic approximation. The elementary excitation is the creation of a localized domain structure where the dimerized order is the opposite to the one of the surroundings. It is a triplet excitation whose formation energy is smaller than the magnon gap. Magnetic internal excitations of the domain are possible and give the further excitations of the system. We discuss these results in the context of recent experimental measurements on the inorganic Spin-Peierls compound CuGeO3_3Comment: 5 pages, 2 figures, corrected version to appear in Phys. Rev.

    Liquefaction Potential of Recent Fills versus Natural Sands Located in High-Seismicity Regions Using Shear-Wave Velocity

    Get PDF
    The liquefaction potential of clean and silty sands is examined on the basis of the field measurement of the shear-wave velocity, Vs. The starting point is the database of 225 case histories supporting the Andrus-Stokoe Vs-based liquefaction chart for sands, silts, and gravels. Only clean and silty sands with nonplastic fines are considered, resulting in a reduced database of 110 case histories, which are plotted separately by type of deposit. A line of constant cyclic shear strain, γcl≈0.03%, is recommended for liquefaction evaluation of recent uncompacted clean and silty sand fills and earthquake magnitude, Mw=7.5. The geologically recent natural silty sand sites in the Imperial Valley of southern California have significantly higher liquefaction resistance as a result of preshaking caused by the high seismic activity in the valley. A line of constant cyclic shear strain, γcl≈0.1–0.2%, is recommended for practical use in the Imperial Valley. Additional research including revisiting available Vs-based and penetration-based databases is proposed to generalize the results of the paper and develop liquefaction charts that account more realistically for deposit type, seismic history, and geologic age

    Microscopic theory for the incommensurate transition in TiOCl

    Full text link
    We propose a microscopic mechanism for the incommensurate phase in TiOX compounds. The model includes the antiferromagnetic chains of Ti ions immersed in the phonon bath of the bilayer structure. Making use of the Cross-Fisher theory, we show that the geometrically frustrated character of the lattice is responsible for the structural instability which leads the chains to an incommensurate phase without an applied magnetic field. In the case of TiOCl, we show that our model is consistent with the measured phonon frequencies at T=300KT=300K and the value of the incommensuration vector at the transition temperature. Moreover, we find that the dynamical structure factor shows a progressive softening of an incommensurate phonon near the zone boundary as the temperature decreases. This softening is accompanied by a broadening of the peak which gets asymmetrical as well when going towards the transition temperature. These features are in agreement with the experimental inelastic X-ray measurements.Comment: 6 pages, 5 figures. Published versio

    Exact diagonalization study of the two-dimensional t-J-Holstein model

    Full text link
    We study by exact diagonalization the two-dimensional t-J-Holstein model near quarter filling by retaining only few phonon modes in momentum space. This truncation allows us to incorporate the full dynamics of the retained phonon modes. The behavior of the kinetic energy, the charge structure factor and other physical quantities, show the presence of a transition from a delocalized phase to a localized phase at a finite value of the electron-phonon coupling. We have also given some indications that the e-ph coupling leads in general to a suppression of the pairing susceptibility at quarter filling.Comment: 11 pages, Revtex v. 2.0, 4 figures available from author

    Antiferromagnetism in doped anisotropic two-dimensional spin-Peierls systems

    Full text link
    We study the formation of antiferromagnetic correlations induced by impurity doping in anisotropic two-dimensional spin-Peierls systems. Using a mean-field approximation to deal with the inter-chain magnetic coupling, the intra-chain correlations are treated exactly by numerical techniques. The magnetic coupling between impurities is computed for both adiabatic and dynamical lattices and is shown to have an alternating sign as a function of the impurity-impurity distance, hence suppressing magnetic frustration. An effective model based on our numerical results supports the coexistence of antiferromagnetism and dimerization in this system.Comment: 5 pages, 4 figures; final version to appear in Phys. Rev.
    • …
    corecore